Latest Posts

All Posts

Plasmid addiction systems: from bacterial toxins to molecular biology tools

Posted by Jennifer Tsang on Nov 1, 2018 8:35:58 AM

Members of the bacterial world produce an assortment toxins to claim territory or kill competing microorganisms, but did you know bacteria also produce substances toxic to themselves?

These toxic substances are part of toxin-antitoxin systems that are widely present in bacteria. They consist of a toxin which can affect a variety of cellular processes and an antitoxin that suppresses the toxin’s activity. The key to these systems is that the toxin is stable while the antitoxin is unstable, meaning that the cells must continually produce antitoxin to avoid cell death.

Read More >

Topics: Plasmid Cloning, Plasmid Technology, Plasmid Elements

Stabilized Bacterial Promoters: Constant Gene Expression at any Copy Number

Posted by Jennifer Tsang on Sep 4, 2018 8:53:28 AM

Researchers express genes of interest from plasmids in order to study gene function or to engineer cells for specific purposes. Unfortunately, plasmid copy numbers vary within cell populations and over time resulting in variable gene expression that can impact observed phenotypes. Factors such as the growth medium, growth temperature, and growth rate can all impact plasmid copy number in a cell.

Read More >

Topics: Plasmid Technology, Synthetic Biology, Plasmid Elements

Finding nucleic acids with SHERLOCK and DETECTR

Posted by Alyssa Cecchetelli on Aug 30, 2018 8:28:06 AM

Sensitive and specific nucleic acid detection is crucial for clinical diagnostics, genotyping, and biotechnological advancements. Current methods of nucleic acid detection however, either lack the sensitivity or the specificity to detect nucleic acids at low concentrations and/or are too expensive, time-consuming, and complex to use outside of standard laboratories. Recently scientists have utilized CRISPR-Cas9 protein variants, Cas13, and Cas12a, to develop simple, portable, and inexpensive platforms to reliably detect nucleic acids at the atomolar level.

Read More >

Topics: CRISPR, Genome Engineering, Plasmid Technology

Split-BioID: An Improved Method for Studying Protein-Protein Interactions

Posted by Beth Kenkel on May 1, 2018 9:57:26 AM

One way to define a protein’s purpose is by its protein-protein interactions (PPIs). These interactions are often modeled as binary relationships, i.e. protein A interacts with protein B; but proteins are social biomolecules. They can be part of multiple dynamic and overlapping complexes that have distinct functions. Many existing methods for identifying PPIs, such as affinity purification mass spectrometry (AP-MS), lack the ability to specifically identify proteins that interact with a particular protein  complex as opposed to an individual protein. The Bethune Lab has overcome this limitation by creating Split-BioID, a spatiotemporally controllable version of the proximity-dependent biotinylation technique BioID. The key advantage of Split-BioID is that it allows for the validation of a binary PPI as well as the identification of additional interacting factors.

Read More >

Topics: Plasmid Technology, Hot Plasmids

RANbodies: Reporter Nanobody Fusions

Posted by Beth Kenkel on Apr 10, 2018 8:56:44 AM

Antibodies are a go-to tool for detecting a protein of interest in cells and tissues. Although antibody production is well established, it’s also a process that’s difficult for individual labs to complete. The nanobody based RANbody platform from the Sanes Lab overcomes this limitation and allows for the flexible design and small scale production of antibodies.

Read More >

Topics: Plasmid Technology

Click here to subscribe to the Addgene Blog
 
Subscribe

 

Recent Posts