Latest Posts

All Posts

Tips for arabidopsis transformation

Posted by Guest Blogger on Oct 25, 2018 9:23:48 AM

This post was contributed by Laura Lee, a graduate student at Stanford University.

Arabidopsis is a fantastic model organism for many reasons, not the least of which is ease of transformation. There are many motivations to generate transgenic Arabidopsis, from studying transcriptional and translational dynamics of genes and proteins in living plants, to complementing mutant phenotypes. Arabidopsis is amenable to the floral drip or dip transformation method. The general steps for this method include:

  • Cloning and transforming a plasmid into the bacterium Agrobacterium tumeficans - a plant pathogenic species that stably integrates transfer DNA (tDNA) into the genomes of the plants it attacks
  • Growing the transformed agrobacterium culture
  • Dipping your plant’s flowers in the agrobacterium culture to allow for tDNA insertions into the plant’s germline
  • Selecting for seeds that have the tDNA insertions (usually via seed growth on antibiotic-containing media)
Read More >

Topics: Plant Biology, Techniques

Arabidopsis in Education: How the Arabidopsis Biological Resource Center Brings Plant Science to Life

Posted by Guest Blogger on Apr 12, 2018 9:02:19 AM

This post was contributed by guest blogger Courtney Price, the Education & Outreach Specialist for the Arabidopsis Biological Resource Center and the Center for Applied Plant Sciences at The Ohio State University.

Established in 1991, the Arabidopsis Biological Resource Center (ABRC) is one of two global stock centers for Arabidopsis thaliana (Arabidopsis). Our mission is to collect, preserve, reproduce and distribute seeds, DNA and other resources for Arabidopsis and related species. Located at The Ohio State University in Columbus, Ohio, ABRC ships more than 100,000 samples to researchers and educators in 60 countries each year.

Read More >

Topics: Education, Plant Biology

CRISPR 101: Engineering the Plant Genome Using CRISPR/Cas9

Posted by Joel McDade on Oct 11, 2016 10:30:00 AM

CRISPR has taken the genome engineering world by storm owing to its ease of use and utility in a wide variety of organisms.  While much of current CRISPR research focuses on its potential applications for human medicine (1), the potential of CRISPR for genome engineering in plants is also being realized. There are a variety of reasons to consider using genome editing to change the genetic code of plants, including the development of crops with longer shelf life and the development of disease-resistant crops to increase agricultural yield (2,3). While it is certainly possible to select for desirable traits using traditional plant breeding approaches, these techniques are cumbersome, often requiring several rounds of selection to isolate plants with the phenotype of interest. Genome engineering, on the other hand, allows for targeted modification of known or suspected genes that regulate a desired phenotype.  In fact, CRISPR has already been used to engineer the genome of many plant species, including commonly used model organisms like Arabidopsis and Medicago truncatula and several crop species including potato, corn, tomato, wheat, mushroom, and rice (4). Despite the almost universal functionality of the CRISPR system in most organisms, some plant-specific changes to CRISPR components are necessary to enable genome editing in plant cells.  

Read More >

Topics: CRISPR, Plant Biology, CRISPR 101

pSiM24: Simplifying Plant Genetic Engineering

Posted by Mary Gearing on Sep 29, 2015 10:30:00 AM

As previous blogs have noted, plants are an important foundation for life on Earth. Selective breeding methods have shaped the plants that we grow and eat, and genetic engineering will continue to improve plant nutrition, yield, and pest resistance. Much of plant genetic engineering revolves around Agrobacterium tumifaciens. Agrobacterium carries a “tumor-inducing” or Ti plasmid, which allows it to transfer genetic material into the host plant genome. Scientists have worked to optimize this system for gene transfer, studying the stability of modified Ti plasmids during plant infection, as well as plasmid yield during preparation in E. coli. Addgene depositor Indu Maiti has created a new and versatile binary Ti vector for both transient and stable gene expression applications in plants. This smaller, easily customizable vector functions in multiple species, including tobacco and Arabidopsis.

Read More >

Topics: Plasmid Technology, Plant Biology

3 Challenges in Plant Synthetic Biology

Posted by Guest Blogger on Jul 22, 2014 1:46:10 PM

This post was contributed by Nikolai Braun and Keira Havens, co-founders of Revolution Bioengineering. Read their previous blog post about how they started their company here.

The first transgenic plant was engineered over 30 years ago, but plant synthetic biology is still in its infancy. A long timeline from transformation to testing and a lack of well-characterized genetic tools make it challenging to engineer a specific function in these multicellular organisms. However, the rewards are great if you take the plunge – plants are the foundation of life on earth, and opportunities abound to build better fuels, feeds, foods, and fibers. And because working with plants can be challenging, there are a lot of unexplored areas in plant biotechnology that are ripe with opportunity. We’ve decided to jump into one of those unexplored areas with our color-changing flower, but to do that we’ve had to navigate the challenges involved in plant synthetic biology.

Read More >

Topics: Synthetic Biology, Plant Biology, Plasmid Kits

Click here to subscribe to the Addgene Blog
 
Subscribe

 

Recent Posts