Latest Posts

All Posts

Genetically-encoded Sparse Cell Labeling - A SPARC of Innovation

Posted by Aliyah Weinstein on May 21, 2020 9:15:00 AM

Until recently, there were no completely genetic tools that would allow researchers to label just a fraction of a single genetically-defined subset of cells. By labeling fewer cells in a population, it’s easier to visualize individual/non-overlapping cells. While transgenic animals are commonly used to specifically manipulate a cell type of interest in an organism, all cells of that type are affected. Previous tools to overcome this restraint include an AAV-based sparse labeling system where a limiting amount of AAV are injected into the brain of Cre-expressing mice to trigger recombination and expression of a transgene (Lin et al., 2018). However, this system requires precise titration of the AAV. So far, tools to overcome this challenge in Drosophila require heat-shocking the system or using chemical inducers of gene expression (del Valle Rodríguez et al., 2011). 

Read More >

Topics: Fluorescent Proteins, Fluorescent Imaging

Bright Monomeric Fluorescent Proteins: mNeonGreen, mTFP1, and mWasabi

Posted by Jennifer Tsang on Apr 25, 2019 11:01:12 AM

We are excited about our new partnership with Allele Biotechnology which allows researchers to deposit plasmids containing the fluorescent protein mNeonGreen. This fluorescent protein joins mTFP1 and mWasabi, as fluorophores from Allele Biotechnology that now can be deposited at Addgene. What makes these fluorescent proteins unique and what can they be used for? Let’s take a look!

Read More >

Topics: Fluorescent Proteins, Fluorescent Imaging

Visualizing Protein Turnover In Situ

Posted by Guest Blogger on Jan 16, 2018 10:20:10 AM

This post was contributed by guest blogger, Eugenia Rojas.

A question worthy of a PhD: How do you visualize protein turnover within a neuron?

For my PhD I studied a synaptic protein that is linked to neurodegeneration. The level of this protein is decreased in Alzheimer’s disease patient’s brains. However, it is not known why or how this happens. Therefore, I set out to study how protein turnover is regulated in neurons.

Read More >

Topics: Fluorescent Proteins, Fluorescent Imaging

Which Fluorescence Microscopy Techniques is Best for Me?

Posted by Guest Blogger on Oct 10, 2017 9:57:00 AM

This post was contributed by Doug Richardson, Director of the Harvard Center for Biological Imaging and a Lecturer on Molecular and Cellular Biology at Harvard University.

No matter whether you are a sports photographer at the Super Bowl, a medical technologist taking an x-ray, or a biologist imaging the smallest structures of life; the key to a great image is contrast. The human visual system relies primarily on contrast to identify individual objects and perceive the world around us. Without contrast, objects simply vanish into noise.

Read More >

Topics: Fluorescent Proteins, Fluorescent Imaging

Better Dyeing Through Chemistry & Small Molecule Fluorophores

Posted by Guest Blogger on Sep 8, 2016 10:30:00 AM

This post was contributed by guest blogger, Luke Lavis, a Group Leader at the Janelia Research Campus, Howard Hughes Medical Institute.

Chemistry is dead, long live chemistry!

The discovery of green fluorescent protein (GFP) sparked a renaissance in biological imaging. Suddenly, cell biologists were no longer beholden to chemists and (expensive) synthetic fluorophores. Add a dash of DNA with an electrical jolt and cells become perfectly capable of synthesizing fluorophore fusions on their own. Subsequent advances in fluorescent proteins have replicated many of the properties once exclusive to small-molecules: red-shifted spectra, ion sensitivity, photoactivation, etc. These impressive advances lead to an obvious question: In this age of GFP and its ilk, why should cell biologists talk to chemists?

Read More >

Topics: Fluorescent Proteins, Fluorescent Imaging, Non-protein Fluorophores

Click here to subscribe to the Addgene Blog
 
Subscribe

 

All Topics

see all

Recent Posts