Latest Posts

All Posts

Visualizing Genomic Loci with CRISPR-Sirius

Posted by Jennifer Tsang on Apr 18, 2019 8:53:21 AM

The catalytically dead Cas9 protein (dCas9) is well known for its ability to bind DNA targets without changing them. Thus, it has been widely adapted for CRISPR activation and inhibition experiments. But over the past few years, dCas9 has become a robust visualization tool to study the spatial and temporal arrangement of chromosomes and how these arrangements may affect nuclear processes. The latest of these visualization tools is CRISPR-Sirius, the brightest CRISPR-based tool to date for visualizing genomic loci in living cells.

Read More >

Topics: CRISPR, CRISPR Visualize

Plasmids for Endogenous Gene Tagging in Human Cells

Posted by Guest Blogger on Apr 6, 2017 9:02:59 AM

This post was contributed by the gene editing team at the Allen Institute for Cell Science. Learn more by visiting the Allen Cell Explorer at allencell.org and the Allen Institute website at alleninstitute.org.

A classic challenge in cell biology is making sure that what we observe through the microscope represents reality as accurately as possible. This is especially true in the case of protein tagging to elucidate cellular structures. Overexpression methods flood the cell with protein, which can both interfere with a cell’s normal function and result in a ubiquitous background signal that makes it hard to visualize the precise location of the protein or structure of interest.

Endogenous gene tagging is an ideal solution because it allows for tagging and visualization of specific, individual proteins under endogenous regulatory control. But even with the advent of CRISPR/Cas9 technology, inserting large tags into a precise location in the genome is still inefficient, particularly in human cell lines. Furthermore, the quality control necessary to ensure the edited cells are behaving normally can be prohibitively expensive for many labs.

Read More >

Topics: CRISPR, CRISPR Visualize

CRISPRainbow and Genome Visualization

Posted by Mary Gearing on Feb 28, 2017 10:30:00 AM

Colorful CRISPR technologies are helping researchers visualize the genome and its organization within the nucleus, also called the 4D nucleome. Visualizing specific loci has historically been difficult, as techniques like fluorescent in situ hybridization (FISH) and chromosome capture suffer from low resolution and can’t be used in vivo. Some researchers have used fluorescently tagged DNA-binding proteins to label certain loci, but this approach is not scalable for every locus...unlike CRISPR. Early CRISPR labeling techniques allowed researchers to visualize nearly any single genomic locus, and recent advances have allowed scientists to track multiple genomic loci over time using all the colors of the CRISPRainbow.

Read More >

Topics: CRISPR, CRISPR Visualize

Mapping the 4D nucleome with CRISPR/Cas9

Posted by Mary Gearing on Aug 11, 2015 10:30:00 AM

It seems that there’s a new CRISPR advance or technique published every week! One of the newest applications is a colorful system that uses fluorescently labeled Cas9 to label multiple genomic loci in live cells. While other systems can be used to label loci, such as fluorescence in situ hybridization (FISH) or fluorescently labeled TALEs, CRISPR/Cas9’s ease of use and ability to label live cells make this system truly advantageous. This new technique, developed in Thoru Pederson’s lab, brings us one step closer to mapping the 4D nucleome, the organization of the nucleus in space and time, and to understanding how nuclear organization varies across the life of a cell, or how organization may be altered in disease states.

Read More >

Topics: CRISPR, CRISPR Visualize

Click here to subscribe to the Addgene Blog
 
Subscribe

 

All Topics

see all

Recent Posts