Latest Posts

All Posts

CRISPR Meets Synthetic Biology: A Conversation with MIT’s Christopher Voigt

Posted by Kendall Morgan on Apr 22, 2015 10:06:00 AM

As Christopher Voigt explains it, his lab at the Massachusetts Institute of Technology has been “working on new experimental and theoretical methods to push the scale of genetic engineering, with the ultimate objective of genome design.” It’s genetic engineering on a genomic scale, with the expectation for major advances in agriculture, materials, chemicals, and medicine.

As they’ve gone along, Voigt’s group has also been assembling the toolbox needed for anyone to begin considering genetic engineering projects in a very big way. In one of his latest papers, published in Molecular Systems Biology in November, Voigt and Alex Nielsen describe what’s possible when multi-input CRISPR/Cas genetic circuits are linked to the regulatory networks within E. coli host cells.

We talked with Voigt about this collision that’s taking place between CRISPR technology and synthetic biology, the tools he’s making available through Addgene, and where all of it is likely to lead us in the future. 

Read More >

Topics: Genome Editing, Investigator Feature, Synthetic Biology, CRISPR

Interview: Hodaka Fujii on enChIP, New CRISPR Tools, and More

Posted by Larissa Haliw on Dec 2, 2014 2:23:00 PM

Hodaka Fujii, M.D., Ph.D., is an Associate Professor at Osaka University. The Fujii lab specializes in developing novel technologies to analyze molecular mechanisms of genome functions such as epigenetic regulation and transcription by using locus-specific chromatin immunoprecipitation (locus-specific ChIP). These methods consist of insertional chromatin immunoprecipitation (iChIP) and engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), both developed in the lab. In June 2014, Dr. Fujii joined Addgene's Advisory Board. 

Addgene: Your lab has worked extensively with enChIP systems. Can you describe this technology and its advantages?

Fujii: In the last several years, my lab has been working on development of technologies for biochemical analysis of genome functions such as transcription and epigenetic regulation. To elucidate molecular mechanisms of regulation of genome functions, we need to identify molecules associated with specific genomic regions of interest in a non-biased manner. To achieve this goal, it is necessary to isolate specific genomic regions while retaining molecular interactions.

Read More >

Topics: Plasmid Technology, Interview, Investigator Feature

Click here to subscribe to the Addgene Blog
 
Subscribe

 

All Topics

see all

Recent Posts