By Guest Blogger
Read More
This post was contributed by the Open Repository of CRISPR Screens. Imagine you’ve just discovered that your favorite gene was described in a CRISPR screen publication. You see this mentioned in the results section, but you had to dig through the supplemental files to see the ...
In this quarterly blog series, we’ll highlight a few of the new CRISPR plasmids available at Addgene. We will still periodically focus on specific CRISPR plasmid tools more in-depth (such as these recent blog posts on prime editing, IgnaviCas9, and Nanoblades), but we hope that ...
In 2008 the Quake Lab at Stanford University became interested in exploring biological dark matter – large tracts of the microbial tree of life that remained unexplored. Using new single-cell sequencing approaches, the lab was able to eliminate the need for axenic (pure) ...
In January 2016 we first published a blog post titled: Which Cas9 Do I Choose for My CRISPR Experiment? The three years flew by, but since then, scientists have adapted CRISPR nucleases for many more specific research needs. In this update, we will focus on the most recent ...
CRISPR is a simple and versatile tool for genome engineering, but its utility is dependent on its ability to infiltrate cells. Options for CRISPR delivery include plasmid transfection, RNP electroporation, and viral transduction; but these methods aren’t stealthy enough to gain ...
In this quarterly blog series, we’ll highlight a few of the new CRISPR plasmids available at Addgene. We will still periodically focus on specific CRISPR plasmid tools more in-depth, but we hope that this blog series will help you find new CRISPR tools for your research! This ...
This post was contributed by Patrick Miller-Rhodes, a Ruth L. Kirschstein NRSA Predoctoral Fellow at University of Rochester Medical Center. During development, complex genetic programs specify and assemble diverse arrays of neurons, forming the neuronal circuits that will later ...