Latest Posts

All Posts

Plasmids 101: Repressible Promoters

Posted by Mary Gearing on May 10, 2018 9:15:54 AM

Promoters control the binding of RNA polymerase and transcription factors. Since the promoter region drives transcription of a target gene, it therefore determines the timing of gene expression and largely defines the amount of recombinant protein that will be produced. Many common promoters like T7, CMV, EF1A, and SV40, are always active and thus referred to as constitutive promoters. Others are only active under specific circumstances. In a previous post, we discussed inducible promoters, which can be switched from an OFF to an ON state, and how you might use these in your research. Today, we’ll look at repressible promoters, which can be switched from an ON to an OFF state, as well as repressible binary systems commonly used in Drosophila.

Read More >

Topics: Plasmids 101

Minisymposium on Reproducibility Livestream

Posted by Tyler Ford on May 9, 2018 10:02:54 AM

UPDATE 5/22/2018 - You can find a thorough breakdown and takeaways from the Minisymposium on reproducibility in this blog post.

 

Today at 3pm EST, we'll be discussing reproducibility issues in the biological sciences at our Minisymposium on Reproducibility. A full description of the event can be found below or on the registration page but you can view the livestream of the talks and panel here:

Read More >

Topics: Scientific Sharing, reprodcubility, Open Science

Analyzing CRISPR Editing Results with ICE from Synthego

Posted by Guest Blogger on May 8, 2018 9:00:20 AM

This article was contributed by Jessica Roginsky, Scientific Support Lead at Synthego. Article source: Step-by-Step Guide for Analyzing CRISPR Editing Results with ICE on Synthego’s blog.

CRISPR-based genome engineering has revolutionized the gene editing field by making experimental workflows considerably easier, faster, and more efficient than previous methods. Still, generating reliable results from CRISPR edit data requires the help of robust software tools. As a consequence, a critical step in the gene editing workflow - analyzing the data - is often under-appreciated or over-looked. 

Read More >

Topics: CRISPR

Cas13d: Small RNA-targeting CRISPR enzymes for transcriptome engineering

Posted by Mary Gearing on May 3, 2018 9:48:09 AM

RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome, but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.

Read More >

Topics: CRISPR

Split-BioID: An Improved Method for Studying Protein-Protein Interactions

Posted by Beth Kenkel on May 1, 2018 9:57:26 AM

One way to define a protein’s purpose is by its protein-protein interactions (PPIs). These interactions are often modeled as binary relationships, i.e. protein A interacts with protein B; but proteins are social biomolecules. They can be part of multiple dynamic and overlapping complexes that have distinct functions. Many existing methods for identifying PPIs, such as affinity purification mass spectrometry (AP-MS), lack the ability to specifically identify proteins that interact with a particular protein  complex as opposed to an individual protein. The Bethune Lab has overcome this limitation by creating Split-BioID, a spatiotemporally controllable version of the proximity-dependent biotinylation technique BioID. The key advantage of Split-BioID is that it allows for the validation of a binary PPI as well as the identification of additional interacting factors.

Read More >

Topics: Plasmid Technology, Hot Plasmids

Blog Logo Vertical-01.png
Click here to subscribe to the Addgene Blog
 
Subscribe