Latest Posts

All Posts

Alyssa Cecchetelli

Alyssa D. Cecchetelli is a Scientist at Addgene. She received her PhD from Northeastern University and is particularly interested in cell signaling and communication. She loves being able to help the scientific community share plasmids.

Recent Posts

New Optimized Genome-wide CRISPRko, CRISPRi, and CRISPRa Libraries

Posted by Alyssa Cecchetelli on Oct 4, 2018 8:44:18 AM

CRISPR pooled libraries have allowed scientists to easily perform genome-wide screens to effectively and efficiently investigate gene function. CRISPR libraries can be used to knock out, inhibit or activate target genes by combining specific sgRNAs with Cas9 or Cas9 derivatives.

Read More >

Topics: CRISPR, pooled libraries

Finding nucleic acids with SHERLOCK and DETECTR

Posted by Alyssa Cecchetelli on Aug 30, 2018 8:28:06 AM

Sensitive and specific nucleic acid detection is crucial for clinical diagnostics, genotyping, and biotechnological advancements. Current methods of nucleic acid detection however, either lack the sensitivity or the specificity to detect nucleic acids at low concentrations and/or are too expensive, time-consuming, and complex to use outside of standard laboratories. Recently scientists have utilized CRISPR-Cas9 protein variants, Cas13, and Cas12a, to develop simple, portable, and inexpensive platforms to reliably detect nucleic acids at the atomolar level.

Read More >

Topics: CRISPR, Genome Engineering, Plasmid Technology

Plasmids 101: Protein Expression

Posted by Alyssa Cecchetelli on Jun 7, 2018 9:17:55 AM

The central dogma in molecular biology is DNA→RNA→Protein. To synthesize a particular protein DNA must first be transcribed into messenger RNA (mRNA). mRNA can then be translated at the ribosome into polypeptide chains that make up the primary structure of proteins. Most proteins are then modified via an array of post-translational modifications including protein folding, formation of disulfide bridges, glycosylation and acetylation to create functional, stable proteins. Protein expression refers to the second step of this process: the synthesis of proteins from mRNA and the addition of post-translational modifications

Read More >

Topics: Plasmids 101, Plasmid How To

Recent Posts