Latest Posts

All Posts

Guest Blogger

Recent Posts

Quick Guide to Working with Drosophila Part 3: Genome Engineering in Flies

Posted by Guest Blogger on Jul 28, 2017 9:30:50 AM

This post was contributed by guest blogger Jon Chow, an immunology PhD student at Harvard University.

In my previous two posts, I’ve described the fundamentals of how to work with Drosophila as an experimental model organism. I then described the Gal4/UAS system used by geneticists to study gene function. In this final installment, I’ll provide a brief introduction as to how you can engineer new transgenic flies to study your favorite gene (YFG). 

Read More >

Topics: Drosophila, Quick Guide to Drosophila

Quick Guide to Working with Drosophila Part 2: Controlling Gene Expression in Flies with Gal4/UAS

Posted by Guest Blogger on Jul 21, 2017 8:48:55 AM

This post was contributed by guest blogger Jon Chow, an immunology PhD student at Harvard University.

In this second post in our quick guide to working with Drosophila, you’ll learn how to maniupate expression of your favorite gene (YFG) in flies. Read the first post here.

Once you’ve identified some fly stocks and other reagents of interest, the next question to ask is what to do with them. In some cases, there might be a mutation that disrupts the function of YFG. You could compare this mutant fly to one lacking the mutation in the same genetic background. In other cases, YFG or one of its mutant variants will need to be overexpressed or knocked down. To do this, Drosophila geneticists use the Gal4/UAS system. This incredibly useful, yet simple system allows you to systematically study gene function with temporal control and cell-type specificity!

Read More >

Topics: Lab Tips, Drosophila, Quick Guide to Drosophila

Quick Guide to Working with Drosophila Part 1: Getting Started with Flies

Posted by Guest Blogger on Jul 13, 2017 10:30:00 AM

This post was contributed by guest blogger Jon Chow, an immunology PhD student at Harvard University.

Do you have a gene of interest but have run into a wall trying to study it? It happens. Is it an evolutionarily conserved gene? Can you find an ortholog in the Drosophila genome? Continue reading and I’ll show you how Drosophila can be used to push your research in new and exciting directions.

Drosophila are very easy to manipulate genetically and have limited genetic redundancy (meaning, there’s more of a chance of seeing a phenotype since additional genes that can do the same function are less likely to exist). If there’s an ortholog of your favorite gene (YFG) in Drosophila (and even if there’s not!) the wealth of Drosophila genetic tools available allow you to study many aspects of your gene’s functional biology in a living organism. This is the first post in a three-part series. We’ll first discuss how to get started on fly work in this post. The second post will detail a major tool used by Drosophila geneticists (the Gal4/UAS system), and the third post will describe how you can make your own mutant flies.

Find Drosophila Resources at Addgene

Read More >

Topics: Lab Tips, Drosophila, Quick Guide to Drosophila

Custom CRISPR Screens & the Green Listed Software

Posted by Guest Blogger on Jul 11, 2017 10:30:00 AM

This post was contributed by guest blogger Fredrik Wermeling, leader of a research group at the Centrum for Molecular Medicine (CMM), Department of Medicine, Solna, Karolinska Institutet, in Sweden.

It can be very time consuming to design 5 guide RNAs (gRNAs) targeting each of the 1000 genes you’d like to investigate in your next CRISPR screen. Luckily, the Green Listed software can help you do just this, probably in less than a minute (1).

Read More >

Topics: CRISPR

Important Considerations When Using AAVs

Posted by Guest Blogger on Jun 13, 2017 10:30:00 AM

This post was contributed by guest blogger Katrina Armstrong, a Neurophysiology Msc Student at the University of Manitoba.

  1. Location, Location, Location!
  2. Failure to Plan (for Storage) Is Planning to Fail
  3. Patience Is Bitter but Its Fruit Is Sweet
  4. The Future?

Need Virus? Check out Addgene's New Viral Service!

I knew little about adeno-associated Viral Vectors (AAVs) before starting my graduate program at the University of Manitoba. Our lab has been utilizing chemogenetics (Designer Receptors Exclusively Activated By Designer Drugs, DREADDs) and optogenetics as tools to investigate the roles of certain cell types in locomotion. We have relied heavily upon AAV vectors to deliver chemogenetic/optogenetic constructs into our cells of interest. Although they have a small packaging capacity, AAV vectors were suitable for our needs for the following reasons:

Read More >

Topics: Viral Vectors

Blog Logo Vertical-01.png

Subscribe to Our Blog