Latest Posts

All Posts

Using Phosphoserine to Study Protein Phosphorylation

Posted by Guest Blogger on Jun 23, 2016 10:30:00 AM

This post was contributed by guest blogger Natalie Niemi, a postdoctoral fellow at the Morgridge Institute for Research in Madison, Wisconsin.

It is commonly cited that approximately one-third of cellular proteins are modified through phosphorylation (1). However, the expansion of studies on protein phosphorylation in an array of model systems coupled with advances in mass spectrometry suggest that phosphorylation is far more prevalent than previously appreciated. PhosphoSitePlus, one of the most inclusive databases of post-translational modifications, identifies a staggering ~250,000 phosphorylation events in the proteomes of higher mammals (2). How can we begin to understand the importance of any of these phosphorylation events on the activity of a given protein?

Read More >

Topics: Synthetic Biology, Other Plasmid Tools, Plasmids

R Bodies: Membrane-Rupturing Microscopic Tools

Posted by Guest Blogger on Apr 14, 2016 10:30:00 AM

This post was contributed by guest blogger Jessica Polka, a Postdoctoral Research Fellow with Pamela Silver. 

Most types of biological motion (whether endocytosis, vesicle trafficking, or muscle contractions) are produced by orchestrated movements of networks of proteins consuming molecular fuel sources. While the importance of understanding these complex processes can’t be overstated, we can also learn a lot from Nature’s simpler solutions to transmitting forces over long distances. For instance, how much force can be generated by conformational changes in proteins? How can information propagate through a structured material over a long distance? And can we understand such a structure well enough to engineer it to suit our purposes?

Read More >

Topics: Synthetic Biology, Other Plasmid Tools, Plasmids

Synthetic Photobiology: Optogenetics for E. coli

Posted by Mary Gearing on Sep 8, 2015 10:30:00 AM

As optogenetics turns 10 years old, it’s easy to forget that this technique isn’t limited to neuroscience. In fact, precise light-based control of biological processes is highly useful in other fields, including synthetic biology. Addgene depositors Christopher Voigt and Jeffrey Tabor have been working on making E. coli light responsive since 2005, when Tabor was working in Voigt's lab. Years later, these classic systems continue to be optimized by Tabor’s lab, making light-controlled gene expression in E. coli easier and more robust.

Read More >

Topics: Optogenetics, Synthetic Biology, Plasmids

CRISPR Meets Synthetic Biology: A Conversation with MIT’s Christopher Voigt

Posted by Kendall Morgan on Apr 22, 2015 10:06:00 AM

As Christopher Voigt explains it, his lab at the Massachusetts Institute of Technology has been “working on new experimental and theoretical methods to push the scale of genetic engineering, with the ultimate objective of genome design.” It’s genetic engineering on a genomic scale, with the expectation for major advances in agriculture, materials, chemicals, and medicine.

As they’ve gone along, Voigt’s group has also been assembling the toolbox needed for anyone to begin considering genetic engineering projects in a very big way. In one of his latest papers, published in Molecular Systems Biology in November, Voigt and Alex Nielsen describe what’s possible when multi-input CRISPR/Cas genetic circuits are linked to the regulatory networks within E. coli host cells.

We talked with Voigt about this collision that’s taking place between CRISPR technology and synthetic biology, the tools he’s making available through Addgene, and where all of it is likely to lead us in the future. 

Read More >

Topics: Synthetic Biology, CRISPR, Other CRISPR Tools

3 Challenges in Plant Synthetic Biology

Posted by Guest Blogger on Jul 22, 2014 1:46:10 PM

This post was contributed by Nikolai Braun and Keira Havens, co-founders of Revolution Bioengineering. Read their previous blog post about how they started their company here.

The first transgenic plant was engineered over 30 years ago, but plant synthetic biology is still in its infancy. A long timeline from transformation to testing and a lack of well-characterized genetic tools make it challenging to engineer a specific function in these multicellular organisms. However, the rewards are great if you take the plunge – plants are the foundation of life on earth, and opportunities abound to build better fuels, feeds, foods, and fibers. And because working with plants can be challenging, there are a lot of unexplored areas in plant biotechnology that are ripe with opportunity. We’ve decided to jump into one of those unexplored areas with our color-changing flower, but to do that we’ve had to navigate the challenges involved in plant synthetic biology.

Read More >

Topics: Scientific Sharing, Synthetic Biology, Plant Biology

Click here to subscribe to the Addgene Blog
 
Subscribe

 

All Topics

see all

Recent Posts