By Eric J. Perkins
Read More
This post was updated on Nov 14, 2017. You've worked hard designing your plasmid – you carefully selected the optimal promoter for your gene of interest, painstakingly cloned into the perfect empty backbone, made sure to add the right tags to your gene, and may have even put a ...
Co-expression of multiple genes is valuable in many experimental settings. To achieve this, scientists use a multitude of techniques including co-transfection of two or more plasmids, the use of multiple or bidirectional promoters, or the creation of bicistronic or ...
Congratulations, you have a plasmid expressing your gene of interest (YGOI) and are ready to dive into your functional experiments! Whether you’ve cloned the plasmid yourself or obtained it from a colleague down the hall, it is always a good idea to take some time to confirm ...
Once you've gotten to know what a plasmid is in general, it's time to take a look at some of its parts. Elements such as the antibiotic resistance gene and the origin of replication are necessary to replicate plasmids and make sure the cells maintains it. Here, we'll cover the ...
Although plasmids do not naturally exist in mammals, scientists can still reap the benefits of plasmid-based research using synthetic vectors and cultured mammalian cells. Of course, these mammalian vectors must be compatible with the cell type they are tranfected into – a ...
In our first few Plasmids 101 posts, we focused mainly on the elements required for plasmid maintenence within an E. coli cell, but vectors can be widely utilized across many different cell types and each one requires different elements for vector propogation. This post, along ...
There are no universal rules for naming plasmids but here are some good guidelines to follow in order to ensure that people can quickly and easily identify what your plasmid contains and other important information.