Latest Posts

All Posts

Harnessing Bacterial Toxins for Allelic Exchange

Posted by Guest Blogger on Aug 15, 2019 8:30:02 AM

This post was contributed by Jacob Lazarus, a postdoctoral researcher at Harvard.

There’s an astounding number of ways to create chromosomal mutations in bacteria, so many that it may be difficult to decide which path to take. A quick and easy way to introduce a mutation in the chromosome is to disrupt expression of a gene with an antibiotic resistance cassette. This leaves a “scar” in the chromosome, sometimes interfering with expression of surrounding genes. However, there are ways to create scarless mutations, ones that don’t leave any undesired scars in the chromosome.

Read More >

Topics: Genome Editing, Plasmids

Advancing Biology with Zebrafish: Genetic Tools for Developmental Studies and More

Posted by Guest Blogger on Aug 13, 2019 8:58:54 AM

This post was contributed by Katherine Rogers, a postdoctoral researcher at the Friedrich Miescher Lab of the Max Planck Society.

Zebrafish (Danio rerio) have been used since the 1930’s in a range of biological studies, including investigations into environmental pollutants and health, embryo growth, brain function, and disease development. Why have zebrafish become such a popular model organism?

Read More >

Topics: Genome Editing

Mouse Modeling, Part 2: Breeding and Crossing Mice

Posted by Aliyah Weinstein on Aug 6, 2019 8:55:01 AM

In Part 1 of our mouse modeling blog series, we covered techniques that can be used to introduce genetic modifications into mouse embryos. But once you generate a growing colony of genetically engineered mice, what can you do? In this post, we’ll cover why and how to cross mice to create double knockout lines and Cre-lox lines, and how to properly control for genetically engineered mice in your experiment.

As you’ve learned in Part 1, there are many types of genetically engineered mice: transgenic mice, knockin and knockout mice, and conditional knockin or knockout mice. While these techniques are each useful for introducing one modification into the mouse genome, they are not commonly used to introduce multiple mutations. This is because as more mutations are introduced into a single embryo, the likelihood that a mouse will end up with the intended genotype at every allele decreases.

Read More >

Topics: Genome Editing, Cre-lox

Mouse Modeling, Part 1: Genetically Engineered Mice

Posted by Aliyah Weinstein on Jul 11, 2019 9:26:08 AM

Mice are a common model organism used to understand mammalian traits and genetically engineered mouse models provide researchers with useful and adaptable tools to perform basic and preclinical research. For scientists new to using mouse models, the possibilities may seem endless - and overwhelming.

In the first blog post in this series, I’ll highlight terminology you should be familiar with before working with mouse models, several common techniques used to create engineered mouse models at embryonic stages, and the pros and cons of different genome editing techniques.

Read More >

Topics: Genome Editing

How to Design Your gRNA for CRISPR Genome Editing

Posted by Guest Blogger on May 3, 2017 11:00:00 AM

This Post was updated on May 3, 2017 with additional information and resources. 

This post was contributed by guest blogger, Addgene Advisory Board member, and Associate Director of the Genetic Perturbation Platform at the Broad Institute, John Doench.

CRISPR technology has made it easier than ever both to engineer specific DNA edits and to perform functional screens to identify genes involved in a phenotype of interest. This blog post will discuss differences between these approaches, as well as provide updates on how best to design gRNAs. You can also find validated gRNAs for your next experiment in Addgene's Validated gRNA Sequence Datatable.

Read More >

Topics: Plasmid How To, Genome Editing, Lab Tips, CRISPR

Click here to subscribe to the Addgene Blog
 
Subscribe

 

All Topics

see all

Recent Posts