Latest Posts

All Posts

SpyLigase Irreversibly Locks Peptides Together for Efficient Cell Capture

Posted by Kendall Morgan on Aug 13, 2014 11:49:04 AM

Mark Howarth’s lab at the University of Oxford is dedicated to generating new tools to manipulate biology based on molecular features found in nature, with the ultimate goal to improve the diagnosis of disease, and cancer in particular. They recently introduced the SpyTag/SpyCatcher system, based on a protein isolated from Streptococcus pyogenes that locks itself together, to produce irreversible protein-peptide interactions. In a study published in Proceedings of the National Academy of Sciences in March, he and his colleagues took another important step forward by dissecting that S. pyogenes protein into three parts. Their efforts yielded a protein, which they call SpyLigase (Spy comes from the “S” in Streptococcus and the “py” in pyogenes), capable of locking two peptide tags together.

SpyLigase overcomes limitations in the use of peptide tags, which often form only weak and reversible bonds. Howarth’s team has already demonstrated in their PNAS paper that SpyLigase can be used to link affibodies or antibodies against common tumor markers to subsequently capture cancerous cells expressing low levels of tumor antigen. I asked Howarth to tell us more about SpyLigase, its development, and its potential uses.

Read More >

Topics: Hot Plasmids, Interview

How to Make Friends and Meet People at a Scientific Conference

Posted by Joanne Kamens on Aug 7, 2014 9:58:00 AM

There is essentially no better place for a scientist to make new relationships than at scientific conferences. Conferences provide the opportunity to meet people who are interested in the same things you are on a deep level. Right away you have something in common. Namely, the scientific question you are interested in and this is a great ice breaker. Of course, real relationships go further and grow over time, but being interested in the same phosphate of your favorite kinase is a good start.

Check out Joanne's Reddit AMA

Read More >

Topics: Career, Networking

Data Freedom: The Expansion of Data Sharing in Research Publications

Posted by Guest Blogger on Aug 5, 2014 2:51:13 PM

This post was contributed by Jim Woodgett.


Public Library of Science (PLOS) created a stir earlier this year when it announced its data access and sharing policy. Since early March, the open access publisher has required authors to include a note as to where readers may locate data supporting the research reported in PLOS publications. The policy was not an overnight revelation, rather it was the result of consultations between researchers and publishers. Nonetheless, the initial release caused a storm as the organization left open the question of how much data was necessary and reasonable. PLOS has since clarified their data sharing policy and recently announced that of the 16,000 manuscripts that had been processed since the declaration, only a small fraction (<1%) of authors have asked for advice about the scope of the policy. End of story? Not quite.

Read More >

Topics: Scientific Sharing

The Michael Davidson Collection: One-Stop Shop for Fluorescent Proteins

Posted by Kendall Morgan on Jul 29, 2014 2:16:00 PM

In the world of fluorescent proteins and their use for imaging cell biology, Michael Davidson’s lab at Florida State University has been the go-to place. In 2012, his National High Magnetic Field Lab worked with an impressive 1,350 scientists from more than 275 institutions all over the world. In the course of all those collaborations over the years, he and his colleagues built a Molecular Expressions collection including some 3,300 plasmids along with image galleries and educational resources to go with them. This collection of plasmids is available in an easily searchable format on Addgene’s Michael Davidson Fluorescent Protein Collection webpage. (Check back regularly as new plasmids are being added to the webpage every week.)

Over 300 Backbones in a Rainbow of Colors

“It’s a great collection with over 300 backbones alone,” said Addgene’s Lianna Swanson, who has been working with members of the Davidson lab to coordinate the impressively big deposit. “He has every fluorescent protein under the sun, from the standard oldies but goodies (e.g., EGFP and YFP) to the new and improved fruit colors (e.g., apple, papaya, and tomato) and the photoactivatable fluors (e.g. Phamret and Dendra). It’s just such a great collection with such variety.”

Read More >

Topics: Hot Plasmids, Fluorescent Proteins

3 Challenges in Plant Synthetic Biology

Posted by Guest Blogger on Jul 22, 2014 1:46:10 PM

This post was contributed by Nikolai Braun and Keira Havens, co-founders of Revolution Bioengineering. Read their previous blog post about how they started their company here.

The first transgenic plant was engineered over 30 years ago, but plant synthetic biology is still in its infancy. A long timeline from transformation to testing and a lack of well-characterized genetic tools make it challenging to engineer a specific function in these multicellular organisms. However, the rewards are great if you take the plunge – plants are the foundation of life on earth, and opportunities abound to build better fuels, feeds, foods, and fibers. And because working with plants can be challenging, there are a lot of unexplored areas in plant biotechnology that are ripe with opportunity. We’ve decided to jump into one of those unexplored areas with our color-changing flower, but to do that we’ve had to navigate the challenges involved in plant synthetic biology.

Read More >

Topics: Synthetic Biology, Plant Biology, Plasmid Kits

Blog Logo Vertical-01.png

Subscribe to Our Blog