Latest Posts

All Posts

Plasmids 101: Gibson Assembly and Other Long-Homology Based Cloning Methods

Posted by Brook Pyhtila on Mar 1, 2016 10:30:00 AM

Over the past decade, scientists have developed and fine tuned many different ways to clone DNA fragments which have provided appealing alternatives to restriction enzyme cloning. These newer technologies have become more and more common, and for good reason. They offer many advantages over the traditional restriction enzyme cloning we once relied exclusively on. In this blog post, I will go over some advantages, disadvantages, and examples of how scientists are using Gibson assembly to put together DNA fragments.

Read More >

Topics: Plasmid Technology, Plasmids 101, Protocols, Plasmid Cloning

PITChing MMEJ as an Alternative Route for Gene Editing

Posted by Mary Gearing on Feb 23, 2016 10:30:00 AM

If you follow CRISPR research, you know all about using non-homologous end-joining (NHEJ) to make deletions or homology-directed repair (HDR) to create precise genome edits. But have you heard of another double-stranded break repair mechanism: MMEJ (microhomology-mediated end-joining)? MMEJ, a form of alternative end-joining, requires only very small homology regions (5-25 bp) for repair, making it easier to construct targeting vectors. Addgene depositor Takashi Yamamoto’s lab has harnessed MMEJ to create a new method for CRISPR gene knock-in, termed PITCh (Precise Integration into Target Chromosomes). Using their PITCh plasmids, GFP knock-in cell lines can be created in about a month and a half, without the need for complicated cloning of homology arms.

Read More >

Topics: Plasmid Technology, Genome Engineering, CRISPR, Techniques

CRISPR-Cas9: Tips for Optimizing sgRNA Activity

Posted by Guest Blogger on Feb 19, 2016 10:18:31 AM

 This post was contributed by John Doench of the Broad Institute.

For more infomation on gRNA design, see our post: How to Design Your gRNA for CRISPR Genome Editing

Whether designing a small number of sgRNAs for a gene of interest, or an entire library of sgRNAs to cover a genome, the ease of programing the CRISPR system presents an embarrassment of riches of potential sgRNAs. How to decide between them? By taking into account both on-target efficacy and the potential for off-target activity, experiments utilizing CRISPR technology can provide a straightforward means of determining loss-of-function phenotypes for any gene of interest.

Predicting sgRNA Efficacy

We have recently examined sequence features that enhance on-target activity of sgRNAs by creating all possible sgRNAs for a panel of genes and assessing, by flow cytometry, which sequences led to complete protein knockout (1).

Read More >

Topics: Plasmid Technology, CRISPR

28 Hot Plasmid Technologies from 2015

Posted by Tyler Ford on Dec 23, 2015 10:30:00 AM



At Addgene we're continually impressed with the amazing plasmid technologies developed by our community of depositors. With over 40,000 plasmids avaliable in the repository, we can't give all of them attention they righlty deserve, but, in this post, we'll provide a small sampling of the many amazing new plasmid tools that have come through our doors in 2015. Do you have a favorite new plasmid tool from the past year? Let us know about it in the comments or shoot us an e-mail at blog@addgene.org and maybe we can write a blog post about it!

Read More >

Topics: Plasmid Technology, Hot Plasmids, Plasmid Kits

Teaching an Old DOG New Tricks: Controlling Protein Activity with GFP

Posted by Mary Gearing on Nov 24, 2015 10:30:00 AM

At Addgene, we love GFP, and we’re always excited when depositors find new ways to make this workhorse protein even more useful! From FPs optimized for oxidizing environments to photoconvertible variants, it seems like GFP is always learning new things. Now, work from Connie Cepko’s lab allow researchers to activate transcription or Cre recombinase activity only in the presence of GFP. These systems, known as T-DDOG and Cre-DOG, respectively, repurpose popular GFP reporter lines for more sophisticated experimental manipulations, saving the time and money needed to develop new lines.

Read More >

Topics: Plasmid Technology, Synthetic Biology, Fluorescent Proteins, Cre-lox

Blog Logo Vertical-01.png
Click here to subscribe to the Addgene Blog
 
Subscribe