Latest Posts

All Posts

Lentiviral CRISPR Libraries Enable Genome-Scale, Knockout Screening

Posted by Kendall Morgan on Feb 20, 2014 11:57:00 AM

It’s clear that CRISPR-Cas9 technology has really changed the game for anyone looking to quickly and easily manipulate specific genes. But what if you want to study genes all across the genome? Two new human lentiviral CRISPR library systems described in companion papers in Science in December were developed as an answer to that question. Additionally, a concurrent Nature Biotechnology article describes the development of a mouse lentiviral CRISPR library. 

“This enables you to do customized genetic modification on a scale that was really not possible before,” said the Broad Institute's Ophir Shalem. “Whole regions of the genome which were not accessible before are now accessible using this technology.”

Read More >

Topics: Plasmid Technology, Genome Engineering, CRISPR, pooled libraries

Quick, Versatile Plant Transgenesis with GreenGate Plasmids

Posted by Kendall Morgan on Jan 23, 2014 10:23:00 AM

A few years ago, researchers introduced what’s been called a major breakthrough in cloning technology with the Golden Gate method. For the first time, it was possible to quickly and efficiently assemble a large number of building blocks with just two or three inexpensive enzymes. Now, a new toolkit - aptly named GreenGate – offers all of those same advantages to researchers working in plant model systems.

“The cloning is all done in vitro; it’s no different in mouse, human or plants,” explained Jan Lohmann of Heidelberg University. “What is different is the plasmids you use to bring this into your target organism. We have designed a Golden Gate system based on the daily needs of an advanced molecular plant science lab.”

Read More >

Topics: Plasmid Technology, Genome Engineering, Synthetic Biology, Plasmid Kits

Plasmids 101: What is a plasmid?

Posted by Margo R. Monroe on Jan 14, 2014 9:43:00 AM

Any newcomer who joins a molecular biology lab will undoubtedly be asked to design, modify, or construct a plasmid. Although the newcomer likely knows that a plasmid is a small circular piece of DNA found in bacterial cells, she may need some extra guidance to understand the specific components that make up a plasmid and why each is important.

This post - the first in our new “Plasmids 101” series designed to educate all levels of scientists and plasmid lovers - serves as an introduction to plasmids. Plasmids 101 will provide you with an overview of general molecular biology knowledge and techniques, and empower you with a firm understanding of the fundamentals. Our mission is to curate a one-stop reference guide for plasmids, so that you can spend less time researching the basics and spend more time developing cleverly designed experiments and innovative solutions necessary for advancing the field.


Read More >

Topics: Plasmid How To, Plasmid Technology, Plasmids 101

The 10 Most Distributed Plasmid Technologies in Addgene's First 10 Years

Posted by Melina Fan on Jan 8, 2014 10:10:30 AM

Addgene was founded 10 years ago today. In that time, Addgene has shipped over 350,000 individual plasmids to 5,000 different research institutions. This has given us a unique window into technology trends in the life sciences.

In this post, we'll give you an inside look at the Top 10 plasmid technologies distributed through Addgene over our first 10 years.

Read More >

Topics: Plasmid Technology, Hot Plasmids, Scientific Sharing, Inside Addgene, Plasmid Kits

Using CRISPR/Cas9 to Edit Disease Out of the Genome

Posted by Kendall Morgan on Jan 7, 2014 10:45:00 AM

There can be no doubt that CRISPR/Cas9 technology has been a breakthrough for the genome-editing field. Now two studies reported in Cell Stem Cell last month show that this tool - already so useful in the laboratory - might also find its way to the clinic.

A team led by Jinsong Li from the Chinese Academy of Sciences found that mice with a dominant mutation in a gene that causes cataracts could be rescued by coinjection into zygotes of Cas9 mRNA and a single-guide RNA targeting the mutant allele. An independent team led by Hans Clevers at Hubrecht Institute in The Netherlands used the CRISPR/Cas9 genome editing system to correct the cystic fibrosis transmembrane conductor receptor (CFTR) by homologous recombination in cultured intestinal stem cells of patients with cystic fibrosis.

Read More >

Topics: Plasmid Technology, Genome Engineering, CRISPR

Blog Logo Vertical-01.png
Click here to subscribe to the Addgene Blog
 
Subscribe