Latest Posts

All Posts

CAPTURE-ing Chromatin Interactions: Using CRISPR-dCas9 to Study Gene Regulation

Posted by Beth Kenkel on Dec 7, 2017 9:16:43 AM

Plasmids can be amazing and simple tools for studying gene regulation. They are used to study how transcription factors and other trans-regulatory elements (TREs) and some cis-regulatory elements (CREs), like promoters, influence gene expression. However, scientists frequently return to native chromosomes because chromatin context matters. The impact of TREs and CREs on gene expression is commonly investigated via Chromatin Immunoprecipitation (ChIP) and chromatin capture techniques, respectively, but these two separate methods are not without their own technical challenges. Enter the Xu Lab's CAPTURE, a method for identifying TREs and CREs that partners CRISPR’s targeting abilities with the strength of the biotin-streptavidin interaction. CAPTURE is capable of identifying old and new TREs and CREs, CRE-CRE interactions, and has even provided enough data for Liu et al to re-draw the beta-globin locus regulation model. Read on to learn more about this captivating tool!

Read More >

Topics: CRISPR, Techniques

Advanced Uses of Cre-lox and Flp-FRT - A Neuroscientist’s View

Posted by Guest Blogger on Oct 19, 2017 9:54:49 AM

This post was contributed by guest blogger Katrin Michel.

Cre-lox is an incredibly popular and powerful site specific recombinase (SSR) system, but it only gives you a single level of control without modification - either Cre is there or it’s not. Cre-mediated possibilities for site specific (and often cell type specific) control of DNA recombination and gene expression can be advanced by the coordinated use of fellow SSR system FLP-FRT. In addition, a variety of means to spatiotemporally control FLP and Cre expression have been developed. Read on to learn more about FLP-FRT, Cre-lox, and how combinations of FLP and Cre enable additional levels of genetic control.

Read More >

Topics: Plasmid Technology, Cre-lox, Techniques

Cloning Mammalian Cells with the Agarose Method

Posted by Guest Blogger on Sep 7, 2017 8:17:41 AM

This post was contributed by guest blogger Iris Lindberg, Professor at the University of Maryland School of Medicine.

In the Lindberg Lab we often make cell lines that overexpress genes of interest; more recently we have also been using Addgene CRISPR vectors to generate cell lines with knockouts of specific genes. Many years ago, people in the laboratory became frustrated with using glass cloning rings to isolate colonies of antibiotic-resistant cells; during the time required to grease, place and fill a dozen cloning rings, the remainder of the colonies on the plate dried out and died. The alternative to cloning rings, dilution cloning into 96-well plates, is extremely time- and resource-consumptive, since only wells with one cell can give rise to single clones, and thus many plates must be examined for single clones and then handled. Additionally, many cell lines, especially the endocrine cell lines we most commonly work with, require extra serum to survive at low densities - adding to the expense of dilution cloning.

Read More >

Topics: Lab Tips, Techniques

Pushing the Limits of DNA Assembly

Posted by Guest Blogger on Sep 6, 2017 9:01:33 AM

This post was contributed by guest blogger Lydia Morrison from New England Biolabs.

What is DNA assembly? In the context of cloning, DNA assembly refers to a method of physically joining multiple fragments of DNA to create a synthetically designed DNA sequence. There are multiple methods of DNA assembly available, including: Gibson Assembly®, BioBrick® Assembly, Golden Gate Assembly, and NEBuilder® HiFi DNA Assembly. Gibson Assembly allows the production of scarless DNA constructs using homologous regions to guide the joining reaction. BioBrick Assembly will leave scar regions at the site of fragment joining, but this is fine for its goal of creating a choice of standardized constructs and tools for the rational and simple shuffling of DNA regions. Golden Gate Assembly also allows the creation of standardized DNA constructs, but its use of Type IIS restriction enzymes results in scarless assembly. Finally, the NEBuilder® HiFi DNA Assembly method from New England Biolabs® has minimal upfront requirements and allows you to expediently join multiple synthetic fragments, create multiple mutations in one or multiple fragments, and generate constructs for producing single-guide RNAs – but it also allows you to skip purification steps and end-repair steps with well-designed fragment overlap sections, while still creating scarless plasmid inserts. 

Read More >

Topics: Techniques, Plasmid Cloning

Plasmids for Endogenous Gene Tagging in Human Cells

Posted by Guest Blogger on Apr 6, 2017 9:02:59 AM

This post was contributed by the gene editing team at the Allen Institute for Cell Science. Learn more by visiting the Allen Cell Explorer at allencell.org and the Allen Institute website at alleninstitute.org.

A classic challenge in cell biology is making sure that what we observe through the microscope represents reality as accurately as possible. This is especially true in the case of protein tagging to elucidate cellular structures. Overexpression methods flood the cell with protein, which can both interfere with a cell’s normal function and result in a ubiquitous background signal that makes it hard to visualize the precise location of the protein or structure of interest.

Endogenous gene tagging is an ideal solution because it allows for tagging and visualization of specific, individual proteins under endogenous regulatory control. But even with the advent of CRISPR/Cas9 technology, inserting large tags into a precise location in the genome is still inefficient, particularly in human cell lines. Furthermore, the quality control necessary to ensure the edited cells are behaving normally can be prohibitively expensive for many labs.

Read More >

Topics: Plasmid How To, CRISPR, Techniques

Blog Logo Vertical-01.png

Subscribe to Our Blog