Latest Posts

All Posts

Plasmids 101: Terminators and PolyA signals

Posted by Julian Taylor-Parker on Mar 31, 2016 10:30:00 AM

Plasmids designed to express genes in a given host cell type are generally broken down into two broad categories, prokaryotic or eukaryotic, based on the functional elements they contain. Plasmid DNA in both prokaryotic and eukaryotic systems must be transcribed into RNA, which occurs in three phases: initiation, elongation, and termination. In a previous post we discussed the promoter's role in the initiation step of gene transcription; today we'll provide an overview on how transcription stops, or termination. Read on to learn more!

Read More >

Topics: Plasmid Elements, Plasmids 101

Plasmids 101: Gibson Assembly and Other Long-Homology Based Cloning Methods

Posted by Brook Pyhtila on Mar 1, 2016 10:30:00 AM

Over the past decade, scientists have developed and fine tuned many different ways to clone DNA fragments which have provided appealing alternatives to restriction enzyme cloning. These newer technologies have become more and more common, and for good reason. They offer many advantages over the traditional restriction enzyme cloning we once relied exclusively on. In this blog post, I will go over some advantages, disadvantages, and examples of how scientists are using Gibson assembly to put together DNA fragments.

Read More >

Topics: Plasmid Technology, Plasmids 101, Protocols, Plasmid Cloning

Plasmids 101: Restriction Cloning

Posted by Tyler Ford on Feb 18, 2016 10:42:06 AM

When cloning by restriction digest and ligation, you use restriction enzymes to cut open a plasmid (backbone) and insert a linear fragment of DNA (insert) that has been cut by compatible restriction enzymes. An enzyme, DNA ligase, then covalently binds the plasmid to the new fragment thereby generating a complete, circular plasmid that can be easily maintained in a variety of biological systems. Read on for an in-depth breakdown of how to do perform restriction digests.

Read More >

Topics: Plasmids 101, Protocols, Plasmid Cloning

Plasmids 101: Sequence and Ligation Independent Cloning (SLIC)

Posted by Mary Gearing on Dec 17, 2015 10:30:00 AM

If cloning methods had personalities, SLIC (sequence- and ligation-independent cloning) would be a true rebel. Not only does this system not use site-specific recombination, it also doesn’t require a ligation step! Based on the robust system of homologous recombination found in E. coli, SLIC is a cheap, standardized, and rapid multi-part DNA assembly method - read on to learn how to use it in your research.

Read More >

Topics: Plasmid How To, Plasmids 101, Protocols, Plasmid Cloning

Plasmids 101: Stringent Regulation of Replication

Posted by Jason Niehaus on Dec 3, 2015 10:30:00 AM

Plasmids utilize their host cell's replication machinery in order to replicate. As described in our previous Origin of Replication post, DNA replication is initiated at the ORI and may be synchronized with the replication of the host cell's chromosomal DNA or may be independent of the host's cell cycle. 

Plasmids are said to be under stringent control of replication when they are dependent on the presence of initiation proteins synthesized by the host cell in order to start their own replication. In general, these types of plasmids tend to be low copy number. Conversely, plasmids that can initiate DNA replication independently of the host's initiation proteins are said to be under relaxed control, as they only require the host's replication machinery for elongation and termination. These types of plasmids tend to be high copy number.

Read More >

Topics: Plasmid Elements, Plasmids 101

Blog Logo Vertical-01.png

Subscribe to Our Blog