Latest Posts

All Posts

The Michael Davidson Collection: One-Stop Shop for Fluorescent Proteins

Posted by Kendall Morgan on Jul 29, 2014 2:16:00 PM

In the world of fluorescent proteins and their use for imaging cell biology, Michael Davidson’s lab at Florida State University has been the go-to place. In 2012, his National High Magnetic Field Lab worked with an impressive 1,350 scientists from more than 275 institutions all over the world. In the course of all those collaborations over the years, he and his colleagues built a Molecular Expressions collection including some 3,300 plasmids along with image galleries and educational resources to go with them. This collection of plasmids is available in an easily searchable format on Addgene’s Michael Davidson Fluorescent Protein Collection webpage. (Check back regularly as new plasmids are being added to the webpage every week.)

Over 300 Backbones in a Rainbow of Colors

“It’s a great collection with over 300 backbones alone,” said Addgene’s Lianna Swanson, who has been working with members of the Davidson lab to coordinate the impressively big deposit. “He has every fluorescent protein under the sun, from the standard oldies but goodies (e.g., EGFP and YFP) to the new and improved fruit colors (e.g., apple, papaya, and tomato) and the photoactivatable fluors (e.g. Phamret and Dendra). It’s just such a great collection with such variety.”

Read More >

Topics: Hot Plasmids, Fluorescent Proteins

Working with Nuclear Receptors

Posted by Guest Blogger on Jul 15, 2014 12:03:00 PM

This post was contributed by Neil J. McKenna and Bert W. O’Malley.

Survival of all organisms depends on efficient energy maintenance - through acquisition, storage, and utilization - and on self-propagation by reproduction. Both physiological processes are controlled by deliberate and compulsory actions instigated by the central nervous system signaling to peripheral effector organs, which then return information such as nutritional status. Within the animal kingdom, this information is relayed through factors (both of endocrine and dietary origin) that are diffused or actively transported from cells, traverse the body through the bloodstream, and eventually elicit their actions on other tissues. At the Nuclear Receptor Signaling Atlas (NURSA), one of our primary goals is to promote an understanding of how these processes are regulated at the cellular, tissue and organ level by nuclear receptors (NRs), their coregulators, and their physiological endocrine ligands.

Nuclear Receptors and their Ligands

NRs represent the largest family of transcription factors found in metazoans. The superfamily is comprised of 48 human and 49 murine members. NRs permit the integration and communication of such signals between central and peripheral organs because of their established roles as molecular sensors and governors of endocrine-hormone signaling.

Read More >

Topics: Hot Plasmids

Hot Plasmids: FRET-Based Biosensors

Posted by Kendall Morgan on May 6, 2014 9:07:55 AM

Oliver Griesbeck of the Max Planck Institute for Neurobiology has been working on genetically encoded indicators of calcium and other small molecules since the very beginnings of the field. Those engineered sensors were designed to replace synthetic calcium dyes, which had been in use since the 1980s.

“Synthetic dyes were the standard in the field, but there is one problem: how to get that into the cells of interest,” Griesbeck said. Because they are chemical compounds, they have to be applied or injected, and they don’t always end up where you want them to go.

Griesbeck is motivated by a particular interest in monitoring the activity and biochemistry of living neurons in an effort to understand the connection between molecular- and cellular-level events and behavior. It’s a problem that he considers “one of the greatest challenges of neuroscience.” 

Read More >

Topics: Plasmid Technology, Hot Plasmids, Fluorescent Proteins

In Living Color: The Skinny on In Vivo Imaging Tools

Posted by Kendall Morgan on Mar 27, 2014 1:14:57 PM

If you start poking around on Addgene’s Fluorescent Protein Guide to In Vivo Imaging, you’ll pretty quickly notice the name Vladislav Verkhusha popping up again and again, and for good reason.

We all know scientists have used fluorescent proteins to observe what’s happening inside cells for at least a couple of decades. Green is the classic color, but fluorescent proteins are available in a variety of hues. While those tools are great for many applications, Verkhusha and his lab at Albert Einstein College of Medicine in New York recognized their limitations for peering right through living animals to see their organs – a liver or brain, say, or maybe a tumor. They wanted to find something better.

Read More >

Topics: Plasmid Technology, Hot Plasmids, Imaging

The 10 Most Distributed Plasmid Technologies in Addgene's First 10 Years

Posted by Melina Fan on Jan 8, 2014 10:10:30 AM

Addgene was founded 10 years ago today. In that time, Addgene has shipped over 350,000 individual plasmids to 5,000 different research institutions. This has given us a unique window into technology trends in the life sciences.

In this post, we'll give you an inside look at the Top 10 plasmid technologies distributed through Addgene over our first 10 years.

Read More >

Topics: Plasmid Technology, Hot Plasmids, Scientific Sharing, Inside Addgene, Plasmid Kits

Blog Logo Vertical-01.png

Subscribe to Our Blog