Latest Posts

All Posts

Generating Mouse Models Using CRISPR/Cas9

Posted by Guest Blogger on Jul 12, 2016 10:30:00 AM

This post was contributed by guest bloggers, Wenning Qin and Haoyi Wang.

CRISPR/Cas9 is revolutionizing the mouse gene-targeting field. Mice have long been extremely useful in the lab – they are relatively small and easy to work with, making them the go-to choice for studying mammalian biology. Similar to any model, mice are not without their problems, but much genetic and physiological data have been accumulated over the years using them. Indeed, the future of mouse work is bright as it is now easier than ever to manipulate the mouse genome using CRISPR/Cas9.

Read More >

Topics: Genome Engineering, CRISPR

Tips for CRISPR Gene Editing in Mice

Posted by Guest Blogger on Jun 28, 2016 6:59:27 AM

This post was contributed by guest blogger Samantha Young.

The use of CRISPR/Cas9 for gene editing has expanded since its adaptation for use in mammalian cells in 2012-2013. Researchers are now using this system in ever more creative ways, (Wang et al., 2013, Cho et al., 2014). There are several variants of the CRISPR/Cas9 system floating around, and many pre-designed plasmids containing these variants ready for purchase. But what is the easiest and fastest way to use the system in mice? We'll have a post that goes into the mouse genome editing process in a bit more detail in the coming weeks, but, in this post, we will outline a simple method for selecting the guide RNA, validating its efficacy in vitro, and using it in mouse embryos to generate gene modified mouse lines. Hopefully this post will help get your in vivo research up and running as soon as possible!

Read More >

Topics: Plasmid Technology, Genome Engineering, Lab Tips, CRISPR

Comparing Cas9 to NgAgo: Can the Argonautes Best CRISPR?

Posted by Mary Gearing on Jun 9, 2016 10:30:00 AM

THE ORIGINAL NgAgo ARTICLE DISCUSSED IN THIS POST HAS BEEN RETRACTED AND FOLLOW UP STUDIES HAVE FAILED TO REPEAT THE RESULTS DISCUSSED BELOW

Biologists are going gaga over the newest gene-editing protein - a DNA-cleaving Argonaute from Natronobacterium gregoryi, or NgAgo for short. Addgene has already distributed this plasmid all over the world, and the question on everyone’s minds is: could NgAgo replace CRISPR? Such a drastic shift won’t happen overnight, but there are a few reasons why you might choose NgAgo over CRISPR proteins Cas9 or Cpf1 - keep reading to learn more!

Read More >

Topics: Plasmid Technology, Genome Engineering, CRISPR

Searchable and Sortable gRNAs for Your Next CRISPR Experiment

Posted by Nicole Waxmonsky on May 17, 2016 10:30:00 AM

This post was written jointly by Addgenies Brook Pyhtila and Nicole Waxmonsky


Resource sharing shortens the time needed to go from planning an experiment to performing one.  At Addgene, over 120 labs have deposited CRISPR reagents, including many gRNA-containing plasmids (McDade et al, 2016). Many of the gRNAs contained within these plasmids have been used successfully in peer reviewed articles. If you’re targeting your favorite gene with CRISPR, using one of these validated gRNAs can save you the time that would be spent making and testing entirely new gRNA designs. You can now easily find many validated gRNAs in our newly curated Validated gRNA Target Sequence Table.

Read More >

Topics: Genome Engineering, Inside Addgene, CRISPR

Targeting HIV-1 with CRISPR: Shock and Kill or Cut it Out?

Posted by Mary Gearing on May 10, 2016 10:30:00 AM


Over 25 million people worldwide are currently infected with the
lentivirus HIV-1. Today, HIV-1 can be controlled with antiviral therapies such that the virus is undetectable in the blood. But the virus doesn’t completely disappear; it just hides in latently infected cells. To truly cure HIV-1, researchers need to vanquish these hidden viral reservoirs, and CRISPR may be the way to accomplish this tough job! Kamel Khalili’s lab at Temple University has demonstrated two potential strategies for CRISPR-HIV therapeutics - one using dCas9-SAM to activate HIV-1 transcription and destroy infected cells, the other using wild-type Cas9 to remove the HIV-1 genome from infected cells. Read on to learn how CRISPR can take on HIV-1 in vitro, and what obstacles must be overcome for clinical success.

Read More >

Topics: Genome Engineering, CRISPR

Blog Logo Vertical-01.png

Subscribe to Our Blog