Latest Posts

All Posts

Mary Gearing

Mary Gearing is a Scientist at Addgene. She got her start as a Science Communications Intern writing for the Addgene blog and website. As a full-time Addgenie, she still enjoys blogging about CRISPR and other cool plasmids!

Recent Posts

CRISPR Methods for Bacterial Genome Engineering

Posted by Mary Gearing on Mar 3, 2016 10:30:00 AM

This post was updated on Dec 5, 2017.

Although CRISPR systems were first discovered in bacteria, most CRISPR-based genome engineering has taken place in other organisms. In many bacteria, unlike other organisms, CRISPR-induced double stranded breaks are lethal because the non-homologous end-joining (NHEJ) repair pathway is not very robust. In many cases, homology-directed repair does not function effectively either, but scientists have devised means of co-opting phage genetic systems to facilitate homologous recombination in bacteria. These quirks change the way CRISPR-mediated genome engineering functions in bacteria, but have no fear - plasmids from Addgene depositors are making it easier than ever to do CRISPR editing in E. coli and other commonly-used bacterial species. Read on to learn about the tools available for bacteria and some of the applications for which they’ve been used.

Read More >

Topics: Genome Engineering, CRISPR

PITChing MMEJ as an Alternative Route for Gene Editing

Posted by Mary Gearing on Feb 23, 2016 10:30:00 AM

If you follow CRISPR research, you know all about using non-homologous end-joining (NHEJ) to make deletions or homology-directed repair (HDR) to create precise genome edits. But have you heard of another double-stranded break repair mechanism: MMEJ (microhomology-mediated end-joining)? MMEJ, a form of alternative end-joining, requires only very small homology regions (5-25 bp) for repair, making it easier to construct targeting vectors. Addgene depositor Takashi Yamamoto’s lab has harnessed MMEJ to create a new method for CRISPR gene knock-in, termed PITCh (Precise Integration into Target Chromosomes). Using their PITCh plasmids, GFP knock-in cell lines can be created in about a month and a half, without the need for complicated cloning of homology arms.

Read More >

Topics: Plasmid Technology, Genome Engineering, CRISPR, Techniques

REPLACR Mutagenesis: Replacing In Vitro Recombination Methods

Posted by Mary Gearing on Feb 10, 2016 10:30:00 AM

Site-directed mutagenesis (SDM) is one of the key tools researchers use to prove causation in molecular biology and genetics. It can be used to characterize the function of certain regions in a promoter or gene, as well as to study the effects of inactivating/activating mutations. In biomedical research, modeling patient mutations using SDM can help determine if a variant is causal for a given disease. CRISPR has made genomic SDM relatively straightforward, but plasmid-based SDM has lagged behind. While commercial kits are available for making small point mutations, large deletions/insertions require complicated, often costly in vitro assembly methods. A new method, REPLACR-mutagenesis, harnesses the power of bacterial recombineering to create insertions, deletions, and substitutions - at the same efficiency as Gibson Assembly and GeneArt cloning - but at a much lower cost. Read on to find out how to replace your SDM method with REPLACR (Recombineering of Ends of Linearized Plasmids After PCR).

Read More >

Topics: Protocols, Techniques, Plasmid Cloning

CRISPR 101: Multiplex expression of gRNAs

Posted by Mary Gearing on Jan 28, 2016 10:50:00 AM

This post was updated on Dec 5, 2017.

CRISPR makes it easy to target multiple loci - a concept called multiplexing. Since CRISPR is such a robust system, editing or labeling efficiency doesn’t usually change when you add multiple gRNAs. Sound good? Addgene has many tools to help you multiplex - we’ll use mammalian plasmids to introduce you to some of your potential options and cloning methods, but please scroll down for plasmids suitable for other model systems, including E. coli, plants, Drosophila, and zebrafish!

Read More >

Topics: Genome Engineering, CRISPR, CRISPR 101, Plasmid Kits

Treating Muscular Dystrophy with CRISPR Gene Editing

Posted by Mary Gearing on Jan 26, 2016 10:30:00 AM

Having seen CRISPR’s success in basic research, researchers are eager to apply it in a clinical setting. CRISPR is often used for animal germline modification, to repair or add in disease-causing mutations, but, until recently it hadn’t been used to treat disease postnatally. Now, three papers published concurrently in Science have shown CRISPR can treat a genetic disease in a postnatal mouse model, an important proof of concept for future preclinical and clinical work.

Read More >

Topics: CRISPR

Blog Logo Vertical-01.png

Subscribe to Our Blog