Mary Gearing

Mary Gearing is a Scientist at Addgene. She got her start as a Science Communications Intern writing for the Addgene blog and website. As a full-time Addgenie, she still enjoys blogging about CRISPR and other cool plasmids!

Recent Posts

Plasmids 101: SunTag and Fluorescent Imaging

Posted by Mary Gearing on Mar 28, 2017 10:30:00 AM

Quick Announcement from the Plasmids 101 Team: In preparation for the release of Addgene's Fluorescent Protein eBook - our next couple of plasmids 101 posts will gain a healthy, fluorescent glow. Stay tuned for more fluorescence-based Plasmid 101 posts in the coming weeks!

In biology as in life, more is often better. More transcription factor binding sites in a promoter lead to higher transcriptional activation. Multiple nuclear localization signals (NLS) increase protein import into the nucleus. In developing their SunTag technology, the Vale and Weissman labs took this biological lesson and created a system to amplify fluorescent signals. Named for the "stellar explosion SUperNova," SunTag can help you turn up the brightness in your fluorescent imaging experiments.

Read More >

Topics: Hot Plasmids, Plasmids 101, Fluorescent Proteins

Addgene Moves to NGS Verification Powered by seqWell

Posted by Mary Gearing on Mar 2, 2017 10:30:00 AM

Last year was an exciting one for Addgene as we introduced our long-awaited viral service, but we haven’t forgotten about our plasmids! Now, we’re improving our quality control processes using next-generation sequencing (NGS) services provided by seqWell. This new QC process will bring you full sequence data for new plasmids entering the repository. Read on to learn more about how this process works and what you can expect to see on our plasmid pages.

Read More >

Topics: Inside Addgene

CRISPRainbow and Genome Visualization

Posted by Mary Gearing on Feb 28, 2017 10:30:00 AM

Colorful CRISPR technologies are helping researchers visualize the genome and its organization within the nucleus, also called the 4D nucleome. Visualizing specific loci has historically been difficult, as techniques like fluorescent in situ hybridization (FISH) and chromosome capture suffer from low resolution and can’t be used in vivo. Some researchers have used fluorescently tagged DNA-binding proteins to label certain loci, but this approach is not scalable for every locus...unlike CRISPR. Early CRISPR labeling techniques allowed researchers to visualize nearly any single genomic locus, and recent advances have allowed scientists to track multiple genomic loci over time using all the colors of the CRISPRainbow.

Read More >

Topics: CRISPR, Fluorescent Proteins

CRISPR 101: Editing the Epigenome

Posted by Mary Gearing on Feb 14, 2017 10:44:08 AM

Epigenetic modifications are an additional layer of control over gene expression that go beyond genomic sequence. Dysregulation of the epigenome (the sum of epigenetic modifications across the genome) has been implicated in disease states, and targeting the epigenome may make certain processes, like cellular reprogramming of iPSCs, more efficient. In general, epigenetic chromatin modifications are correlated with alterations in gene expression, but causality and mechanisms remain unclear. Today, targeted epigenetic modification at specific genomic loci is possible using CRISPR, and Addgene has a number of tools for this purpose!

Read More >

Topics: CRISPR, CRISPR 101

Single Base Editing with CRISPR

Posted by Mary Gearing on Aug 16, 2016 10:30:00 AM

When we talk about CRISPR applications, one negative always comes up: the low editing efficiency of homology-directed repair (HDR). Compared to the random process of non-homologous end joining, HDR occurs at a relatively low frequency, and in nondividing cells, this pathway is further downregulated. Like all CRISPR applications that use wild-type Cas9, editing by HDR also has some potential for off-target cleavage even when gRNAs are well designed. Rather than try to improve HDR, Addgene depositor David Liu’s lab created new Cas9 fusion proteins that act as “single base editors.” These fusions contain dCas9 or Cas9 nickase and the rat cytidine deaminase APOBEC1, which can convert cytosine to uracil without cutting DNA. Uracil is subsequently converted to thymine through DNA replication or repair. Komor et al. estimate that hundreds of genetic diseases could be good targets for base editing therapy, not to mention the potential basic and preclinical research applications. Read on to learn about this new way to make point mutations using CRISPR without double-stranded breaks.

Read More >

Topics: Genome Engineering, CRISPR

Addgene blog logo

Subscribe to Our Blog