Latest Posts

All Posts

Marcy Patrick

Marcy is a Senior Scientist at Addgene. She received her PhD in Microbiology and Immunology from the University of Michigan. She loves that her job allows her to interact with scientists from all over the world and help them easily share their reagents.

Recent Posts

Plasmids 101: Green Fluorescent Protein (GFP)

Posted by Marcy Patrick on May 15, 2014 11:33:00 AM

Bioluminescence and fluorescence from proteins such as Green Fluorescent Protein (GFP) has likely existed in creatures such as jellyfish for millions of years; however, it took until the 1960s for scientists to begin to study GFP and deduce its biochemical properties. Now GFP and its fluorescent derivatives are a staple in the lab. GFP is used in research across a vast array of biological disciplines and scientists employ GFP for a wide number of functions, including: tagging genes for elucidating their expression or localization profiles, acting as a biosensor or cell marker, studying protein-protein interactions, visualizing promoter activity, and much more.

Read on to learn more about GFP, how scientists have evolved this versatile protein to suit their experimental needs, and some of the common applications in the lab.

Read More >

Topics: Plasmid Elements, Plasmids 101, Fluorescent Proteins

Plasmids 101: Mammalian Vectors

Posted by Marcy Patrick on Mar 25, 2014 11:15:00 AM

Although plasmids do not naturally exist in mammals, scientists can still reap the benefits of plasmid-based research using synthetic vectors and cultured mammalian cells. Of course, these mammalian vectors must be compatible with the cell type they are tranfected into – a bacterial origin of replication (ORI) will not allow for plasmid replication in mammalian cells, for example, and a toxin that kills bacteria may not have any discernable effect on mammalian cells. In this blog post we will discuss how mammalian plasmids differ from their bacterial counterparts, including how replication occurs and whether selection is necessary for transfected cells.

Read More >

Topics: Plasmid How To, Plasmid Technology, Plasmids 101

Plasmids 101: Yeast Vectors

Posted by Marcy Patrick on Feb 25, 2014 2:11:00 PM

In our first few Plasmids 101 posts, we focused mainly on the elements required for plasmid maintenence within an E. coli cell, but vectors can be widely utilized across many different cell types and each one requires different elements for vector propogation. This post, along with a future companion post on mammalian vectors, will catch you up on the core replication and resistance features of yeast vectors and explain how they differ from the bacterial elements previously described.

Why Do Scientists Use Yeast Vectors?

Yeast are eukaryotes and thus contain complex internal cell structures similar to those of plants and animals. Unlike bacteria, yeast can post-translationally modify proteins yet they still share many of the same technical advantages that come with working with prokaryotes. This includes but is not limited to: rapid growth, ease of replica plating and mutant isolation, a well-defined genetic system, and a highly versatile DNA transformation system.

Read More >

Topics: Plasmid How To, Plasmid Elements, Lab Tips, Plasmids 101

Plasmids 101: Antibiotic Resistance Genes

Posted by Marcy Patrick on Jan 30, 2014 10:29:00 AM


Resistance to antibiotics is a widely used tool in molecular biology, yet scientists rarely stop to think about how much easier it makes our lives. Plasmid transformation into E. coli is a fairly inefficient process– just 1 out of 10,000 cells on average! Without some means of quickly determining which cells successfully received the correct plasmid, scientists would spend hours to days trying find their correct clones. Additionally, the presence of a plasmid is disadventageous from the bacterium's perspective – a plasmid-containing cell must replicate the plasmid in addition to its own chromosomal DNA, costing additional resources to maintain the plasmid. Adding an antibiotic resistance gene to the plasmid solves both problems at once – it allows a scientist to easily detect plasmid-containing bacteria when the cells are grown on selective media, and provides those bacteria with a pressure to keep your plasmid. Viva la (bacterial) resistance! 

Read More >

Topics: Plasmid How To, Plasmid Elements, Lab Tips, Plasmids 101

Subscribe to Our Blog